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Discussing Gradient Flows
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Informal reading group on Optimal Transport
May 25, 2020
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Plan

I will informally discuss:

I Gradient flows in RN;
I 3 approaches to gradient flows in more general spaces;
I Gradient flows in W2.
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In RN

General first order ODE in RN:

ẋ(t) = F(x(t))

where t 7→ x(t) is a curve, t 7→ ẋ(t) the tangent, x 7→ F(x) a vector field.

Gradient flows in RN:
ẋ(t) = −∇V(x(t))

where t 7→ x(t) is a curve, t 7→ ẋ(t) the tangent, x 7→ V(x) a scalar
function, called a “potential”.
Newton’s second law for conservative force + friction:

mẍ(t) = −∇V(x(t)) − γẋ(t).

Taking m → 0, we (formally) recover a gradient flow.
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In more general spaces

There are at least 3 approaches to generalizing gradient flows to more
general spaces:

I Riemannian geometry;
I Metric derivatives and upper gradients;
I Discretization in time.
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In more general spaces

There are at least 3 approaches to generalizing gradient flows to more
general spaces:
I Riemannian geometry;

I Metric derivatives and upper gradients;
I Discretization in time.
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In more general spaces

There are at least 3 approaches to generalizing gradient flows to more
general spaces:
I Riemannian geometry;
I Metric derivatives and upper gradients;

I Discretization in time.
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In more general spaces

There are at least 3 approaches to generalizing gradient flows to more
general spaces:
I Riemannian geometry;
I Metric derivatives and upper gradients;
I Discretization in time.
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Riemannian geometry
To consider

ẋ(t) = −∇V(x(t)),
we would want to:

I give a meaning to ẋ(t) (cannot simply substract points on M);
I give a meaning to ∇V(x(t)) (which is of the same nature as ẋ(t)).

In Riemannian geometry (M, g),
I ẋ(t) is a tangent vector to x(t) and is defined — like any tangent

vector — by its action on functions f : M → R

(ẋ(t))(f) := d
ds f (x(s))

∣∣∣
s=t

;

I an inner product g defined on pairs of tangent vectors provides a
nice way of defining a vector field from V by asking that

g(∇V, Z) := Z(V) ∀Z.
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ẋ(t) = −∇V(x(t)),
we would want to:
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I ẋ(t) is a tangent vector to x(t) and is defined — like any tangent
vector — by its action on functions f : M → R
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More general metric spaces

Sadly, we can’t always define those objects (or maybe we can, but it’s
messy)... In many metric spaces though, we can still

I define |ẋ(t)| as a scalar function (the metric derivative in Gabriel’s
presentation);

I define |∇V(x)| as a scalar function (upper gradient ∼ local Lipschitz
constant);

I interpret
ẋ(t) = −∇V(x(t))

as
˙(V ◦ x)(t) ≤ − 1

2 |ẋ(t)| − 1
2 |∇V(x(t))|2

(check that this is equivalent in RN).
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Discretization in time

Again in rather general metric spaces, we can

1. Divide time into intervals of small length τ

2. Ask that the “discrete trajectory” (xτ
k )k∈N satisfies

xτ
k+1 ∈ argmin

m

(
V(x) + 1

2τ d(x, xτ
k )2

)
;

3. Hope for convergence as τ → 0.
To see why this makes sense, note that, in RN,

xτ
k+1 ∈ argmin

x

(
V(x) + 1

2τ d(x, xτ
k )2

)
! 0 = ∇V(y) + 1

τ (xτ
k+1 − xτ

k )

is an implicit Euler scheme for ẋ = −∇V(x).
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Gradient flows in W2

Santambrogio chooses to go through discretization in time, but one can
use either of the other two!

I See [Otto. The geometry of dissipative evolution equations: the
porous medium equation, Commun. Partial Differ. Equ., 26 (2001)]
or [Lott. Some geometric calculations on Wasserstein space,
arXiv:math/0612562v2 (2007)] for the Riemannian approach.

I See [Ambrosio, Gigli, Savaré. Gradient Flows, Birkhäuser (2005)] for
the approach with metric derivatives.
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Santambrogio chooses to go through discretization in time, but one can
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I See [Otto. The geometry of dissipative evolution equations: the

porous medium equation, Commun. Partial Differ. Equ., 26 (2001)]
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Gradient flows in W2

Our metric space is the space W2 of prob. meas. with finite variance,
equipped with the 2-Wasserstein distance

W2(µ, ν)2 := inf
γ∈Γ(µ,ν)

∫
d(x, y)2γ(dx, dy)

and we want to perform study the gradient flow for a function(al)
F : W2 → R ∪ {+∞}.

I will completely ignore issues of absolute continuity, smoothness and
boundary conditions. The presentation will be full of half-truths and you
should really read the book :) .
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Gradient flows in W2

When considering

µτ
k+1 ∈ argminµ

(
F(µ) + 1

2τ W2(µ, ν)2
)

,

the first variations (Gabriel’s presentation) of F and W2
2 appear

 δF
δµ

+ ϕ

τ
= constant

where ϕ is the Kantorovich potential for the optimal transport from µ
to µτ

k .

Differentiating,
∇ δF

δµ
= −∇ϕ

τ
= T − id

τ
.

As τ → 0, this can hopefully be thought of as coming from a continuity
equation on RN

 µ̇ = div
(

µ∇ δF
δµ

)
.
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An Important example

Consider
F(µ) = −Θ Ent(µ) +

∫
V(x)µ(dx).

for some constant Θ > 0.

We saw last time that

δF
δµ

= Θ + Θ log µ + V

so that
µ∇ δF

δµ
= Θ∇µ + µ∇V

and
µ̇ = div(Θ∇µ + µ∇V) = Θ∆µ − div

(
µ(−∇V)

)
.

This is the evolution of the probability density for the SDE

dx = −∇V(x) dt +
√

2Θ dw.
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