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General first order ODE in RV:

where t — x(t) is a curve, t — X(t) the tangent, x — F(x) a vector field.

Gradient flows in RV:
X(t) = =V V(x(t))

where t — x(t) is a curve, t — X(t) the tangent, x — V(x) a scalar
function, called a “potential”.

Newton's second law for conservative force + friction:
mx(t) = =V V(x(t)) — vx(¢).

Taking m — 0, we (formally) recover a gradient flow.
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There are at least 3 approaches to generalizing gradient flows to more
general spaces:

» Riemannian geometry;
» Metric derivatives and upper gradients;

» Discretization in time.
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» an inner product g defined on pairs of tangent vectors provides a
nice way of defining a vector field from V by asking that

g(VVv,2):=Z(v) vz
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More general metric spaces

Sadly, we can't always define those objects (or maybe we can, but it's
messy)... In many metric spaces though, we can still

» define |X(t)| as a scalar function (the metric derivative in Gabriel's
presentation);

> define |[VV(x)| as a scalar function (upper gradient ~ local Lipschitz
constant);

» interpret
X(t) = =VV(x(1))

(Vox)(t) < —31x(8) — 31V V(1)

(check that this is equivalent in RV).
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Discretization in time

Again in rather general metric spaces, we can
1. Divide time into intervals of small length 7

2. Ask that the "discrete trajectory” (X} )xen satisfies

X1 € argmin (V(x) + 5 d(x, XZ)Z);

3. Hope for convergence as 7 — 0.

To see why this makes sense, note that, in RV,
Xopn € argmin (V(3) + L d(xG)2) e 0= VYY) + L0 — X0)

is an implicit Euler scheme for x = —V V(x).
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Santambrogio chooses to go through discretization in time, but one can
use either of the other two!
> See [Otto. The geometry of dissipative evolution equations: the
porous medium equation, Commun. Partial Differ. Equ., 26 (2001)]
or [Lott. Some geometric calculations on Wasserstein space,
arXiv:math/0612562v2 (2007)] for the Riemannian approach.
» See [Ambrosio, Gigli, Savaré. Gradient Flows, Birkhauser (2005)] for
the approach with metric derivatives.
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Our metric space is the space W, of prob. meas. with finite variance,
equipped with the 2-Wasserstein distance

Wa(p,v)? == inf )/d(x,y)zq/(dx, dy)

yET (p,v

and we want to perform study the gradient flow for a function(al)
F Wy = RU {+0c0}.

| will completely ignore issues of absolute continuity, smoothness and
boundary conditions. The presentation will be full of half-truths and you
should really read the book :) .
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Gradient flows in W

When considering
i € argming, (F() + £ Wa(u,v)?),

the first variations (Gabriel's presentation) of F and W2 appear

oF
— + — = constant
o T

where ¢ is the Kantorovich potential for the optimal transport from p
to .

Differentiating,
oF _@ _ T-id

ST T

As 7 — 0, this can hopefully be thought of as coming from a continuity

equation on RV
. . oF
~ = div (W@).
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An Important example

Consider
F(h) = ~OEnt(u) + [ oul(e).

for some constant © > 0. We saw last time that

1)
oF _ ©+0Ologu+V
op
so that
oF
uV—=0Vu+uvVVv
op
and

fi = div(OVu + uV V) = 0Au — div (u(—V V).
This is the evolution of the probability density for the SDE

dx=-VV(x)dt+ V20 dw.



