
(Rough) Introduction to properties of Wp

—

May 25, 2020

Abstract

These notes are an abridged version of Chapter 5 of “Optimal Transport for Applied
Mathematicians”, by Filippo Santambrogio, for the Summer 2020 reading group on Topics
in Optimal Transport. This is meant to quickly outline some of the fundamental definitions
and notions that are necessary for reading papers in the general area.

Distance and triangle inequality

Let Ω ⊆ Rd and define the set of probability measures over Ω be denoted by P(Ω). We
restrict our understanding to the set of probability measures with finite p moments, denoted
by the set

Pp(Ω) =

{
µ ∈ P(Ω)

∣∣∣∣ ∫ |x|p dµ < +∞
}
.

Note that if Ω is bounded, then P(Ω) = Pp(Ω).

For two measures µ, ν ∈ Pp(Ω), we define

Wp(µ, ν) := min
γ∈Π(µ,ν)

{∫
Ω×Ω
|x− y|p dγ

}1/p

.

Recall that Π(µ, ν) is the set of joint probability measures with marginals µ and ν. Since
the measures have p finite moments, this gives us finite-ness of Wp(µ, ν).

Proposition 1. The quantity Wp is a distance over Pp(Ω) and satisfies the triangle in-
equality.

With this, we can define a new space, and hence we can work with new notions of
topologies. The following definition can be generalized to any complete separable metric
(Polish) space.

Definition 2. For each p ∈ [1,+∞) we define the Wasserstein space of order p, Wp(Ω), as
the space Pp(Ω) endowed with the distance Wp.

Topology induced by Wp

In this section, we formalize notions of convergence in Wp. First, we recall the notion of
“weak convergence”, which denotes convergence in the duality with Cb (space of bounded
continuous functions).
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Definition 3. (“Weak convergence”) For a sequence (µn) ⊆ Pp(Ω), we say that µn ⇀ µ
if and only if for every ϕ ∈ Cb(Ω), we have∫

ϕ dµn →
∫
ϕ dµ.

Note that if Ω is compact, then the spaces Cb(Ω), C0(Ω), C(Ω) and Cc(Ω) coincide.
For the remainder of this section, we tie together statements about weak convergence and
convergence in Wp.

Theorem 4. If Ω ⊆ Rd is compact and p ∈ [1,+∞), in the space Wp(Ω), we have µn ⇀ µ
if and only if Wp(µn, µ)→ 0.

Theorem 5. In the space Wp(Rd), we have Wp(µn, µ) → 0 if and only if µn ⇀ µ and∫
|x|p dµn →

∫
|x|p dµ.

Curves in Wp

A curve is a continuous function ω : [0, 1]→ X, where (X, d) is a metric space. If it exists,
we define the metric derivative of ω at time t, denoted by |ω′|(t) through

|ω′|(t) := lim
h→0

d(ω(t+ h), ω(t))

|h|
.

Theorem 6. Suppose ω ∈ C([0, 1], X) is Lipschitz continuous. Then the metric derivative
|ω′|(t) exists for almost every t ∈ [0, 1]. Morever, for t < s, we have

d(ω(t), ω(s)) ≤
∫ s

t
|ω′|(τ) dτ.

A more general notion of (continuous) curves are absolutely continuous curves, denoted
by AC(X). A curve ω ∈ C([0, 1], X) is said to be absolutely continuous if, for every t0 < t1,
there exists a g ∈ L1([0, 1]) such that

d(ω(t0), ω(t1)) ≤
∫ t1

t0

g(s) ds.

Connection with the continuity equation

We henceforth assume Ω is compact. We denote a vector field (parameterized by t) as
vt, and we assume they lie in Lp. The goal here is to link curves in AC(Wp(Ω)) and the
continuity equation, defined as

∂tµt +∇ · (vtµt) = 0. (1)

One can view the divergence term as excess of mass which is injected into the motion at
every point. Some intuition on the continuity equation: suppose a family of particles is
initialized with respect to some density µ0, with each particle following the ODE{

y′x(t) = vt(yx(t))

yx(0) = x,
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with yx(t) being the position of the particle x at time t. Defining Yt(x) = yx(t) and µt :=
(Yt)#(µ0). Then the pair (µt,vt) satisfy (1) in the weak sense: for all ϕ ∈ C1

c ((0, 1),Ω), we
have ∫ 1

0

∫
Ω

(∂tϕ) dµtdt+

∫ 1

0

∫
Ω
∇ϕ · vt dµtdt = 0.

We are now ready to state the main result of this section

Theorem 7. Let (µt)t∈[0,1] be an absolutely continuous curve in Wp(Ω) with p > 1. Then

for a.e. t ∈ [0, 1] there exists a vector field vt ∈ Lp(µt;Rd) such that

• (µt,vt) satify (1) in the weak sense,

• for a.e. t, we have ‖vt‖Lp((µt) ≤ |µ′|(t), the metric derivative at time t of the curve
t 7→ µt with respect to Wp.

Conversely, if (µt)t∈[0,1] is a family of measures in Pp(Ω) and for each t we have a vector

field vt ∈ Lp(µt;Rd) with
∫ 1

0 ‖vt‖Lp(µt) < +∞ solving the continuity equation, then (µt)t is
absolutely continuous in Wp(Ω) and, for a.e. t, we have |µ′|(t) ≤ ‖vt‖Lp(µt).

Constant-speed geodesics in Wp

This section is mostly definitions. Let ω be some general curve in a metric space (X, d).
The length of a curve is formally defined as

Length(ω) := sup

{
n−1∑
k=0

d(ω(tk), ω(tk+1))

∣∣∣∣ n ≥ 1, 0 = t0 < t1 < · · · < tn = 1

}
.

Proposition 8. For any curve ω ∈ AC(X), we have

Length(ω) =

∫ 1

0
|ω′|(t) dt.

A curve ω : [0, 1] → X is a geodesic between x0 and x1 ∈ X if it minimizes the length
among all curves such that ω(0) = x0 and ω(1) = x1. A space (X, d) is a length space if

d(x, y) = inf{Length(ω) | ω ∈ AC(X), ω(0) = x, ω(1) = y}.

A space (X, d) is a geodesic space if there exists a geodesic that attains the infimum above.
In a length space, a curve is a constant-speed geodesic between ω(0) and ω(1) ∈ X if it
satisfies

d(ω(t), ω(s)) = |t− s|d(ω(0), ω(1)), ∀t, s ∈ [0, 1].

Equivalently, ω is a constant-speed geodesic if (and only if) ω ∈ AC(X) and |ω′|(t) =
d(ω(0), ω(1)) (constant speed modulus) a.e.

Theorem 9. Suppose Ω is convex. Let µ, ν ∈ Pp(Ω) and let γ∗ ∈ Π(µ, ν) be an optimal
transport plan for Wp(µ, ν). Define πt : Ω× Ω→ Ω through πt(x, y) = (1− t)x+ ty. Then
the curve µt := (πt)#γ is a constant speed geodesic in Wp connecting µ0 = µ to µ1 = ν.
Thus, Wp(Ω) is a geodesic space.

Remark 10. If γ = γT (i.e. the plan is given by an optimal transport map), then the curve
in the aforementioned theorem is given by ((1− t)Id+ tT )#µ.

Proposition 11. Suppose γ is induced by an optimal transport map T ; then then particles
initialized at x move on a straight line with constant speed T (x)−x. Define Tt := (1−t)Id+
tT (it is invertible), the velocity field vt(y) = (T −I)(T−1

t (y)) and the geodesic µt = (πt)#γ.
Then (µt,vt) satisfy the continuity equation with ‖vt‖Lp(µt) = |µ′|(t) = Wp(µ, ν).
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